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Abstract— In this research we study construction of the Surreal Numbers, showing it is a class that forms the totally ordered Field, and then 

explore some of new numbers, we present the reader some algebraic operations related to combinatorial games and gives a detailed outlook 

of the Surreal Numbers. A fresh outlook to some combinatorial mathematical algebraic operations, through the evaluation of a deduced 

several algebraic concepts. 

Index Terms— Combinatorial games, Surreal Numbers, Groups, Fields, Algebraic Studies. 

——————————      —————————— 

1 INTRODUCTION                                                                     

n 1902, combinatorial game theory was born by Bouton at 
Harvard [1]. In the 1930s, Sprague and Grundy extended this 
theory to cover all impartial games. In the 1970s, the theory 

was extended to partisan games, a large collection which 
includes the ancient Hawaiian game called Konane [2], many 
variations of Hackenbush, cutcakes, ski-jumps, Domineering, 
Toads-and-Frogs, etc. [3]. One reviewer remarked that 
although there were over a hundred such games in Winning 
Ways, most of them had been invented by the authors. John 
Conway axiomatized this important branch of the subject [4].        
     In this paper we construct objects called games, which are 

ordered pairs of independent sets containing already 

constructed games, one of which we call the left set and the 

other the right set. These fractal constructions, first discovered 

and studied by John H. Conway, can describe both the games 

of Game Theory after which they are named, as well the real 

and ordinal numbers, and more besides. This paper introduces 

games, and specifically to Conway’s Surreal Numbers, as 

introduced in his 1976 ''book On Numbers and Games'', a 

subclass of Games that contains and extends the real and 

ordinal numbers to a field [5]. We study the Surreal Numbers, 

showing they form a totally ordered field, comparing the 

surreal constructions of the reals and ordinals to their usual 

constructions and exploring the new numbers that emerge from 

this method of construction. After that we introduce the 

concept of combinatorial games and how they relate to the 

mathematical objects of games, some of the mechanisms and 

arguments by which we try to analyze these games, and then 

work through and prove the complete theory for a few of these 

games.  

     Most of the proofs in the first half of the paper follow those 

of Conway in On Numbers and Games, though they are here 

expanded and explicitly reasoned, and the paper attempts to be 

comprehensive in the material that it covers, omitting no proofs 

except those which are obvious repetitions. 

    In short if we want to talk about the surreal numbers, the 
Surreal Numbers are a totally ordered class that form a Field (a 
field of a class, rather than a set) that extends the real and 
ordinal numbers, and is the largest totally ordered Field 
described yet in history , it has been shown to be the largest 

possible ordered field [6]. In the next few sections we shall show 
this rigorously, but in this section, we less formally explore the 
(literally) simplest surreal numbers and arguments to help 
develop the reader’s intuition around this unique construction, 
as well as defining many key terms. 
 
2 Numbers Constructions 
  Surreal numbers were invented (some prefer to say 

“discovered”) by John Horton Conway of Cambridge 

University and described in his book On Numbers and Games. 

Conway used surreal numbers to describe various aspects of 

game theory, the term “surreal number” was invented by 

Donald Knuth. 

     What can surreal numbers be used for? Not very much at 

present, except for some use in game theory. But it is still a new 

field, and the future may show uses that we haven’t thought of. 

Nevertheless, surreal numbers are worth studying for two 

reasons. First, as a study in pure math they are a fascinating – 

even beautiful – subject. Secondly, they provide a good 

introduction to and exercise in abstract algebra, and as such 

they serve a didactic purpose. 

     So, what are surreal numbers? Before we start looking at the 

definition, you must forget everything you know about 

numbers. You don’t know what “less than” means. You don’t 

know what “equal to” means. You don’t know what “one” or 

“two” or “three” means. You don’t know what addition and 

multiplication are. Okay?      

     Now we can begin with two definitions that must be 

considered in tandem: 

2.1 Definition 

For any two sets of numbers L and R, 
∃ the number {𝐿|𝑅} ⟺ ∄𝓍ϵ𝐿 ∶ 𝓍 ≥ 𝓎, ∀𝓎 ∈ 𝑅. 

That is, there exists a new number {𝐿|𝑅} if and only if no 
member of L is greater-than-or-equal to any member of R. 
We denote the left set of a number 𝑎 as 𝐴𝐿and the right set as𝐴𝑅, 
so 
 𝑎 = {𝐴𝐿|𝐴𝑅} . 

It is important to distinguish between numbers and sets of 

numbers, so we use lower case letters to denote numbers, and 
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upper-case letters to denote sets of numbers. We   also denote 

an arbitrary member of 𝐴𝐿as 𝑎𝑙, and write 

 𝑎𝑙 = {𝐴𝐿𝐿|𝐴𝐿𝑅}, and similarly write 𝑎𝑅 = {𝐴𝑅𝐿|𝐴𝑅𝑅}for a 

member of 𝐴𝑅. 

2.2 Definition 

For any two numbers 𝓍 = {Χ𝐿|Χ𝑅}  and𝓎 = {Y𝐿|Y𝑅}, 

𝓍 ≤ 𝓎 ⟺ ∄𝓍𝐿ϵΧ𝐿: 𝓍𝐿 ≥ 𝓎 ∧ ∄𝓎𝑅ϵY𝑅: 𝓎𝑅 ≤ 𝓍 

That is 𝓍 ≤ 𝓎, if and only if no member of Χ𝐿 (the left set of 𝓍) 

is greater-than-or-equal to 𝓎 and no member of Y𝑅(the right set 

of y) is less-than-or-equal to 𝓍. We will also often use the 

inverse of this∶ 

𝓍 ≰ 𝓎 ⟺ ∃𝓍𝐿ϵΧ𝐿: 𝓍𝐿 ≥ 𝓎 ∨ ∃𝓎𝑅ϵY𝑅: 𝓎𝑅 ≤ 𝓍 

     We also define equality here as: 𝓍 = 𝓎 ⟺ 𝓍 ≤ 𝓎 ∧ 𝓍 ≥ 𝓎, 

define less-than as 𝓍 < 𝓎 ⟺ 𝓍 ≤ 𝓎 ∧ 𝓎 ≰ 𝓍 

, and define greater-than as 𝓍 > 𝓎 ⟺ 𝓍 ≥ 𝓎 ∧ 𝓎 ≱ 𝓍 

We from previous  can see directly then that equality is a 

symmetric relation between two numbers (i.e. 𝓍 = 𝓎 ⟺ 𝓎 =

𝓍), also both less-than and greater-than are asymmetric 

relations (i.e. 𝓍 < 𝓎 ⟺ 𝓎 ≮ 𝓍), and that both less-than-or-

equal and greater-than-or-equal are 

 antisymmetric (i.e. 𝓍 ≤ 𝓎 ∧ 𝓎 ≤ 𝓍 ⇒  𝓍 = 𝓎). 

     From these two definitions we can begin to construct and 

order numbers. First, we know there exists a set containing no 

elements, called the empty set, written ∅ = { } and consider the 

empty set. Then by 2.1 definition, letting L=R= ∅, there exists a 

number{ ∅| ∅}, since the empty set has no elements and so 2.1 

definition’s requirement is automatically fulfilled. Let us call 

this number 0: = { ∅| ∅} (and we will later show that it is the 

additive identity for the surreal numbers as we expect from 

zero), giving us two sets of numbers, ∅and {0}. Then we can 

construct three more possible numbers: 

𝑎:= {{0}| ∅}    𝑏: = { ∅|{0}}   𝑐: = {{0} |{0}} 

(For ease, since in all our constructions there is only one left set, 

and only one right set, we usually omit the outmost brackets of 

these sets, and if one of these sets is the empty set, we leave that 

side empty. So, we rewrite: 

𝑎 = {0| }, 𝑏 = { |0}, 𝑐 = {0|0}, 0 = { | } ). 

For 𝑎, the only member of 𝐴𝐿 is 0, and there are no members of 

𝐴𝑅, so from 2.1 definition, 𝑎 is a number. Similarly, as there are 

no members of 𝐵𝐿,b is a number, Generally, any 

construction 𝓍 = {Χ𝐿|Χ𝑅} with either  Χ𝐿 = ∅  𝑜𝑟 Χ𝑅 = ∅ will be 

a number, as 2.1 definition will hold vacuously. For c, we have 

0𝛜𝐶𝐿 and 0𝛜𝐶𝑅. But from 2.2 definition we know that 0≥0, so by 

2.1 definition we see that c is not a number [7]. 

     Now we have three numbers,0, 𝑎, and b. We can use 2.2 

definition to order them. First, we consider 0 and a: 

Is 0 ≤ 𝑎? There are no members of 0𝐿, so ∄𝓍  ϵ0𝐿: 𝓍  ≥

𝑎.Similarly, there are no 

members of  𝐴𝑅 , 

so ∄𝑎𝑅ϵA𝑅: 𝑎𝑅 ≤ 0. 

So, by 2.2 definition, 0 ≤ 𝑎. 

Is 𝑎 ≤ 0? 0 ϵA𝐿and 0 ≤ 0, so by 2.2 definition, 0 ≰ 𝑎. 

So, we have 0 ≤ 𝑎 and 𝑎 ≰ 0, which implies. 0 < 𝑎. 

Next, we consider 0 and b: 

Since 0 ϵB𝑅 and  0 ≤ 0, we have 0 ≰ 𝑏. And since B𝐿 =  0𝑅 = ∅ , 

the conditions for 𝑏 ≤ 0 hold vacuously, so 0 ≰ 𝑏 ∧ 𝑏 ≤ 0 ⇒

 𝑏 < 0. 

We can now order our three numbers: 𝑏 < 0 < 𝑎, and it is easy 

to check directly by the same method that 𝑏 < 𝑎. 

We write 1: = 𝑎 = {0| } and ́ -1: = 𝑏 = { |0}, 

these names later. For now, we consider the eight sets of 

numbers we can now form: 

                                 ∅         {−1}         {0}         {1}      

    {−1,0}        {−1,1}         {0,1}         {−1,0,1} 

Pairing these up into left and right sets, we get 64 candidates 

for numbers. However, since we have ordered -1,0 and 1, we 

can quickly show using 2.1 definition that most of them are not 

numbers, leaving us with the following: 

{−1| }        {−1,0| }        {−1,1| }        {−1,0,1| }        {0,1| }        {1| } 

{ |−1}        { |−1,0}        { |−1,1}        { |−1,0,1}        { |0,1}        { |1} 

́{−1|0}        {−1|0,1}        {−1|1}        {−1,0|1}        {0|1} 

     However, by using the Truncation Theorem which tells us 

we can remove all but the greatest element in the left set, and 

all but the least in the right set, and this new construction will 

be equal to the original one, and noting that, for example   

, 0 ≤ {−1|1 }and {−1|1 } ≤ 0(meaning {−1|1 } = 0 ), we can 

show that many of these candidates are equal to each other (we 

formalize this in the next section after showing = is an 

equivalence relation), leaving us finally with only these four 

new numbers created (and ordered using 2.2 definition): 

          { |−1} < −1 < {−1|0} < 0 < {0|1} < 1 < {1| } 

     Indeed, we will show later that we are justified in calling 

these numbers  

-2 : = { |−1}, −1 2⁄ ∶ = {−1|0 },  1 2⁄ ∶ = {0|1 } and 2 : = {1| }, that 

is that they have the properties we expect, such as 1 2⁄ + 1 2⁄ =

1. 

We began with one number, 0, from which we constructed two 

more numbers, -1and 1, from which in turn we constructed four 

more numbers. Notice that it would be impossible to construct 

2 before constructing 1, or 1 before constructing 0. This is 

because 0 was constructed in a previous step, or day. We call 

one number simpler than another if it was constructed on an 

earlier day and call the day a number is constructed on is its 

birthday. Thus 1 is simpler than 2, but 2 is as simple as -2 or 1/2, 

since they have the same birthday. We say then that 0 was 

created on day 0, 1 on day 1, &c. Similarly, if we have a set of 

numbers, we call the sum of their birthdays their day sum, and 

if one set of numbers has a lower day sum than a different set 

of numbers, we say that set is the simpler set. 
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The definition of the birthday of a number is the day on which 

it is first constructed, and we say 

that a number 𝓍 is simpler than another number 𝓎 if 𝓍 has an 

earlier birthday than 𝓎. 

2.3 Surreal Numbers  

    The existence of a surreal number 𝓍 implies at the very least 

that the new surreal number {𝓍| } exists. Thus, the Surreal 

Numbers are not a set, but a proper class [8]. 

     In the next paragraph we will explain the appropriate 

mathematical methods that we will use to prove some 

important theorems. 

2.4 Methods of Proof  

We will call the elements of Χ𝐿 the left options of 𝓍, and the 

elements of Χ𝑅the right options of 𝓍. Often, we use induction on 

the options of a number 𝓍 to show that a property P holds for 

that 𝓍. In terms of birthdays, we can express this method of 

proof as follows: suppose that, for some property P, 𝓍 is the 

simplest number for which P does not hold. Then if we can 

show that this implies that P does not hold for one of the options 

of 𝓍 ,we have a contradiction, since we can always express 𝓍 in 

a form where it has only options simpler than 𝓍, since this is the 

only way to express 𝓍 on its birthday. This means that either P 

holds for no numbers, or if we show that P holds for the 

simplest number,0, that P holds for all numbers. In the first 

proof below we will repeat this argument explicitly, but after 

that we will use it implicitly, and use phrases like ‘we 

eventually only have to check the case of 0’ or ‘we inductively 

reduce the question down to 0’ to refer to this reasoning [9]. 

We will in general be proving theorems on all numbers, 

including infinite ordinals. Usually in transfinite induction we 

must show that P holds for the base case (P(0)holds),the 

successor case (for any successor ordinal 𝛼+1,P( 𝛼 + 1) holds if 

P(𝛼) holds),and the limit case (for any limit ordinal 𝛽, P(𝛽) 

holds if P(�́�) holds for all𝛽 < 𝛽́ ) [8]. However, since here we 

do induction on the birthday of a number, we treat each day 

after 0 as a limit case, and only need to show P(0) holds, and 

then that for any number 𝓍, including ordinals, P(𝓍)follows 

from P(�́�) for some �́� simpler than 𝓍,since we assume that P(�́�) 

holds for all �́� created on an earlier day than 𝓍. 

2.5 Ordering the Surreal Numbers 

     In this section we build on our two definitions and show that 

the Surreal Numbers are totally ordered, and then prove some 

more general properties of the surreals, which allow us to 

manipulate them up to equality, which will be very useful for 

later proofs. 

2.5.1 Lemma 
For any number 𝓍 , 𝓍 ≤ 𝓍 𝑎𝑛𝑑 𝓍 = 𝓍. 

Proof. 

(a) 𝓍 ≤ 𝓍: From 2.2 definition, we must show 

 ∄𝓍𝐿ϵΧ𝐿: 𝓍𝐿 ≥ 𝓍, or equivalently, 𝓍 ≰    𝓍𝐿, ∀𝓍𝐿ϵΧ𝐿                    (1) 

  ∄𝓍𝑅ϵΧ𝑅: 𝓍𝑅 ≤ 𝓍, or equivalently, 𝓍 ≱ 𝓍𝑅 , ∀𝓍𝑅ϵΧ𝑅                     (2)  

but 𝓍 ≰ 𝓍𝐿if there exists an  �̃�𝐿
ϵΧ𝐿 such that �̃�𝐿 ≥ 𝓍𝐿 for any𝓍𝐿, 

 and 𝓍 ≱ 𝓍𝑅 if there exists an �̃�𝑅
ϵΧ𝑅 such that  �̃�𝑅 ≤ 𝓍𝑅 for 

any 𝓍𝑅. But we can choose  �̃�𝐿 = 𝓍𝐿and  �̃�𝑅 = 𝓍𝑅, and in this 

way we have reduced the question on 𝓍 to questions on the 

options of 𝓍, that is we now know that 

 𝓍 ≤ 𝓍 if both𝓍𝐿 ≤ 𝓍𝐿  and𝓍𝑅 ≤ 𝓍𝑅. 

Now suppose that the theorem does not hold for 𝓍, and that 

furthermore 𝓍 is the simplest number for which the theorem 

does not hold. Then we must also have either that the theorem 

holds for no numbers, because the theorem holding for simpler 

numbers would imply it holding for numbers with those 

simpler numbers as options, or that the theorem holds for all 

numbers, if the theorem holds for the simplest number, 0. So we 

only have to consider only whether 0 ≤ 0. But this follows from 

the fact that 0 has no options, so by induction, 𝓍 ≤ 𝓍 all 𝓍. This 

method of argument will we use often, and from now on, 

implicitly [10].  

(b) 𝓍 = 𝓍 : This follows directly from our definition of = and (a). 

2.5.2 Theorem 

For any number 𝓍, 𝓍𝐿 < 𝓍 for all 𝓍𝐿ϵΧ𝐿. 

Proof. 

We first show that 𝓍𝐿 ≤ 𝓍  for all 𝓍𝐿ϵΧ𝐿.. For this to be true we 

must have from 2.2 definition that both 

∄𝓍𝐿𝐿ϵΧ𝐿𝐿: 𝓍𝐿𝐿 ≥ 𝓍                                                                                   (3) 

And ∄𝓍𝑅ϵΧ𝑅: 𝓍𝑅 ≤ 𝓍𝐿 , ∀𝓍𝐿ϵΧ𝐿  .                                                          (4)                                                                                                                

Note that (4) is just restating of 2.1 definition, so we just need to 

show (3), which can be equivalently written as 

 ∀𝓍𝐿𝐿ϵΧ𝐿𝐿 , 𝓍 ≰ 𝓍𝐿𝐿.                                                                         (5)                                                                                                                                

Then by the inverse form of 2.2 definition, (5) is true if 

∃ 𝓍𝐿ϵΧ𝐿: 𝓍𝐿 ≥ 𝓍𝐿𝐿, ∀𝓍𝐿𝐿ϵΧ𝐿𝐿                                                                   (6) 

but this is the same condition that we wanted to show at the 

start of (a), replacing 𝓍 with  𝓍𝐿 and  𝓍𝐿with  𝓍𝐿𝐿, that is to say, 

we have𝓍𝐿 ≤ 𝓍   only if 𝓍𝐿𝐿 ≤ 𝓍𝐿, for all 𝓍𝐿𝐿ϵΧ𝐿𝐿. By repeating 

this process, we will eventually only have to consider sets 

whose only left option is 0, so (3) will hold vacuously. Thus, by 

induction𝓍𝐿 ≤ 𝓍   for all 𝓍𝐿ϵΧ𝐿. 

Now we show that 𝓍 ≰ 𝓍𝐿 for all 𝓍𝐿ϵΧ𝐿. By the inverse form of 

2.2 definition, to prove this it is enough to show that 

∃ �̃�𝐿ϵΧ
𝐿
:  �̃�𝐿 ≥ 𝓍𝐿                                                                                      (7)                                                                                                                                                  

and we can choose  �̃�𝐿 = 𝓍𝐿, and then from Lemma 2.4.1 Thus 

𝓍𝐿 < 𝓍 for all𝓍𝐿ϵΧ𝐿. 

2.5.3 Theorem 
[11] For any number 𝓍, 𝓍 < 𝓍𝑅 for all 𝓍𝑅ϵΧ𝑅. 
For any number 𝓍, 𝓍𝐿 < 𝓍 for all 𝓍𝐿ϵΧ𝐿. 
Proof. 

By a symmetric argument the proof for this is the same as the 

proof from Theorem 2.5.2 but considering the right options of 
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𝓍  . 

    We say that any two numbers 𝓍 = {Χ𝐿|Χ𝑅} and 𝓎 =

{Y𝐿|Y𝑅}are identical if and only if Χ𝐿 = Y𝐿 and Χ𝑅 = Y𝑅,and 

write 𝓍 ≡ 𝓎  to express identity. We also simplify the notation 

here by writing ‘for all/there exists𝓍𝐿, instead of the longer ‘for 

all/there exists 𝓍𝐿ϵΧ𝐿, , since there is no ambiguity, as every 

number has only one left set and one right set. 

2.5.4 Theorem 

If two numbers 𝓍 and 𝓎 are identical, then they are also equal. 

Proof. 

Since 𝓍 and 𝓎 yare identical, Χ𝐿 = Y𝐿 and Χ𝑅 = Y𝑅. Then 𝓍 ≤

𝓎if there does not exist any𝓎𝐿 ≥ 𝓎or any𝓍𝑅 ≤ 𝓍  , and𝓎 ≤ 𝓍 if 

there does not exist any𝓍𝐿 ≥ 𝓍  or any𝓎𝑅 ≤ 𝓎 . But from 

Theorems 2.5.2/2.5.3 none of these exist, so 𝓍 = 𝓎. 

2.5.5 Theorem 

For all numbers 𝓍 , 𝓎, and 𝒵, if 𝓍 ≤ 𝓎and 𝓎 ≤ 𝒵  , then 𝓍 ≤ 𝒵. 

Proof. 

We will do a proof by contradiction, so assume that the 

proposition𝜋(𝓍 , 𝓎, 𝒵): (𝓍 ≤ 𝓎 ∧  𝓎 ≤ 𝒵  ∧ 𝓍 ≰ 𝒵holds. Then 

the following all hold by 2.2 definition: 

∄𝓍𝐿 ∶  𝓍𝐿 ≥ 𝓎                                                                                             (8) 

∄𝒵𝑅 ∶  𝒵𝑅 ≤ 𝓎                                                                                          (9)                                                                                                                                    

∃𝓍𝐿 ∶  𝓍𝐿 ≥ 𝒵  ∨  ∃𝒵𝑅 ∶  𝒵𝑅 ≤ 𝓍                                                       (10)                                                                                 

If we suppose the first proposition of (10) holds, then by 

considering also (8) the following holds: 

∃𝓍𝐿 ∶   𝓎 ≤ 𝒵  ∧ 𝒵  ≤ 𝓍𝐿 ∧ 𝓎 ≰ 𝓍𝐿                                                 (11)                                                                                                   

That is, 𝜋( 𝓎 , 𝒵, 𝓍𝐿). If we suppose the second proposition of 

(10) holds, then by considering also (9) the following holds∶ 

∃𝒵𝑅 ∶  𝒵𝑅 ≤ 𝓍 ∧ 𝓍 ≤ 𝓎 ∧ 𝒵𝑅 ≰ 𝓎                                                 (12)                                                                                                       

That is, 𝜋(𝒵𝑅 , 𝓍 , 𝓎). So, in either case the truth 

of 𝜋(𝓍 , 𝓎, 𝒵)depends on the truth of 𝜋 with one of 𝓍 or 

𝒵 replaced by one of their options. Then, since (10) will not hold 

for anyΧ𝐿 = Ζ𝑅 = ∅, by induction 𝜋(𝓍 , 𝓎, 𝒵)not hold. So, we 

must have 𝓍 ≤ 𝓎 ∧  𝓎 ≤ 𝒵  ⇒ 𝓍 ≤ 𝒵, that is that numbers are 

transitive under≤. 

 

     It follows directly from Theorem 2.5.5 that = is transitive, so 

we have now shown that= is an equivalence relation on 

numbers, as it is reflexive, symmetric, and transitive. 

Then equality partitions the surreals into equivalence classes, 

and in general when we talk of constructing a new number, we 

mean a number that is not equal to an already constructed 

number, that is it does not belong to any already existing 

equivalence class. We call a construction that is not identical to 

an already constructed number ,but that is equal to one, a new 

form of that number, so that on day 2 we construct the new 

number 2= {0,1| }, but the new construction{−1,0| } is just a 

new form of the number 1. In section 5 we define the natural 

form of a number, which is the simplest representation of any 

equivalence class that can be constructed in a finite number of 

days [12]. 

 

2.5.6 Theorem 

For any numbers 𝓍 and 𝓎, either 𝓍 ≤ 𝓎 or 𝓎 ≤ 𝓍. 

Proof. 

By contradiction, suppose neither 𝓍 ≤ 𝓎 nor  𝓎 ≤ 𝓍. Then by 

the inverse of definition2: 

∃𝓍𝐿 ∶  𝓍𝐿 ≥ 𝓎 ∨  ∃𝓎𝑅 ∶  𝓎𝑅 ≤ 𝓍                                                      (13)                                                                                                          

∃𝓎𝐿 ∶  𝓎𝐿 ≥ 𝓍 ∨  ∃𝓍𝑅 ∶  𝓍𝑅 ≤ 𝓎                                                    (14)                                                                                                        

Then there are four combinations of statements that we must 

show are contradictory [13]. 

∃𝓍𝐿 ∶  𝓍𝐿 ≥ 𝓎and∃𝓎𝐿 ∶  𝓎𝐿 ≥ 𝓍. From Theorem 2.4.2 we 

know𝓍𝐿 ≤ 𝓍  and𝓎𝐿 ≤ 𝓎. It follows from Theorem 2.4.5 

that𝓎 ≤ 𝓍𝐿 ≤ 𝓍  and 𝓍 ≤ 𝓎𝐿 ≤ 𝓎 . But then 𝓍 = 𝓎, which 

contradicts our supposition. 

∃𝓍𝐿 ∶  𝓍𝐿 ≥ 𝓎 and ∃𝓍𝑅 ∶  𝓍𝑅 ≤ 𝓎. It follows that ∃𝓍𝐿, 𝓍𝑅 ∶  𝓍𝑅 ≤

𝓍𝐿, but this contradicts 2.1 definition. 

∃𝓎𝑅 ∶  𝓎𝑅 ≤ 𝓍 and ∃𝓎𝐿 ∶  𝓎𝐿 ≥ 𝓍. The argument is as in (b). 

∃𝓎𝑅 ∶  𝓎𝑅 ≤ 𝓍 and ∃𝓍𝑅 ∶  𝓍𝑅 ≤ 𝓎. Similarly, to (a), from 

Theorem 2.4.3 it follows that 𝓎 ≤ 𝓎𝑅 ≤ 𝓍 and𝓍 ≤ 𝓍𝑅 ≤ 𝓎, 

 so 𝓍 = 𝓎. 

So, numbers are total under≤. 

We have now shown that ≤ is a non-strict total order on 

numbers, as it is reflexive (from Lemma 2.5.1), antisymmetric 

(from the definition of equality), transitive (from Theorem 

2.5.5), and total (from Theorem 2.5.6). 

2.5.7 Theorem 

For any number 𝒵  = {Ζ𝐿|Ζ𝑅}, if Ζ𝐿 has a greatest member a , we 

can write 𝒵 = {a|Ζ𝑅}, and if Ζ𝑅 has a least member 𝑏, we can 

write 𝒵 = {Ζ𝐿|𝑏} [14]. 

Proof. 

If a is the greatest element of Ζ𝐿, then for all Ζ𝐿 ≠  a, Ζ𝐿 < a , so 

we can apply the Truncation Theorem on Ζ𝐿 and rewrite𝒵 =

{a|Ζ𝑅}. We can similarly do this for Ζ𝑅, and write 𝒵 = {a|𝑏} 

A word more on notation: every number has only one left set 

and one right set. But in specifying that a number’s left or right 

set contains the elements from the union of more than one set, 

we wish to omit to union sign for ease and esthetics [15]. Thus, 

we read 

    𝑎 = {𝐴𝐿1 , 𝐴𝐿2|𝐴𝑅1 , 𝐴𝑅2}   as  𝑎 = {𝐴𝐿1⋃𝐴𝐿2|𝐴𝑅1⋃𝐴𝑅2}  . 

3. Algebraic properties on the Surreal Numbers 
     Our aim in this section is to show that we can define an 

arithmetic on the Surreal Numbers such that its equivalence 

classes have a field structure. That is, for any three surreal 

numbers 𝓍,𝓎 and 𝓏, we can define the two operations + 

(addition) and  ∙ (multiplication), such that all the following 

field definitions hold [16]: 

(a) Closure under addition and multiplication: 𝓍 + 𝓎 is a 

number and 𝓍 ∙ 𝓎 is a number. 
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(b) Commutativity under addition and multiplication: 𝓍 + 𝓎 =

𝓎 + 𝓍 and 𝓍 ∙ 𝓎 = 𝓎 ∙ 𝓍 . 

(c) Associativity under addition and multiplication: (𝓍 + 𝓎) +

𝓏 = 𝓍 + (𝓎 + 𝓏) and(𝓍 ∙ 𝓎) ∙ 𝓏 = 𝓍 ∙ (𝓎 ∙ 𝓏) . 

(d) Existence of an addition identity 0 such that 𝓍 + 0 = 𝓍.  

(e) Existence of a multiplicative identity 1 such that 𝓍 ∙ 1 = 𝓍. 

(f) Existence of an additive inverse −𝓍 such that 𝓍 + −𝓍 = 0.  

(g) Existence of a multiplicative inverse 𝓍−1 such that 𝓍 ∙ 𝓍−1 =

1, for all       𝓍 ≠ 0. 

(h) Distributivity of multiplication over addition: 𝑎 ∙ (𝑏 + 𝑐) = 

𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐   

Note that we will often write 𝓍 ∙ 𝓎 as simply 𝓍𝓎. We begin now 

with addition. 

3.1 Addition 
Conway says in On Numbers and Games: “The spirit of 

definitions is to ask what we already know about the object 

being defined, and to make the answers part of our definition.” 

[5] In defining addition then, what we want (if we are to 

construct an arithmetic that matches our intuitive 

understanding of the world) is that, for example, 𝓍 + 𝓎 > 𝓍𝐿 +

𝓎, for all 𝓍 and 𝓎. Let us then define addition on numbers then 

as: 

                      𝓍 + 𝓎: = {Χ𝐿 + 𝓎, 𝓍 + Y𝐿|Χ𝑅 + 𝓎, 𝓍 + Y𝑅} 

3.1.1 Example  
Calculate 1 + 1 2⁄ . To do this, we must first remember that 1 ∶

 = {0|  }and  1 2⁄ ∶ = {0|1 }. So we have  

1 + 1 2⁄ ∶ = {0 + 1/2,1 + 0|∅ + 1/2,1 + 1 } 

              ∶ = {0 + 1/2,1 + 0|1 + 1 } 

This expresses 1 + 1 2⁄  in terms of other sums. So, let’s have a 

go at 0 + 1 2⁄ . Remember that 

0∶ = { | }. 

0 + 1/2 ∶ = {∅ + 1/2,0 + 0|∅ + 1/2,0 + 1 } 

                ∶ = {0 + 0|0 + 1 } 

Let’s find 0 + 0 

0 + 0 ∶ = {∅ + 0,0 + ∅|∅ + 0,0 + ∅ } 

          : = { | } ∶ = 0 

          So, what about 0 + 1  ? 

0 + 1 ∶ = {∅ + 1,0 + 0|∅ + 1,0 + ∅ } 

          : = {0 | } ∶ = 1 

          Similarly, we find that 1 + 0 ∶ = 1 

Now 

0 + 1/2 ∶ = {0 + 0|0 + 1 } 

                ∶ = {0|1 } 

                ∶ = 1/2  

Now, let’s have a go at 1 + 1 

1 + 1 ∶ = {0 + 1,1 + 0|∅ + 1,1 + ∅ } 

                ∶ = {1| } 

                ∶ = 2  

Finally, we can go back to find 1 + 1 2⁄             

1 + 1 2⁄ ∶ = {0 + 1/2,1 + 0|1 + 1 } 

                ∶ = {1/2,1|2 } 

                ∶ = {1|2 } 

                ∶ = 1 1/2  

3.1.2 Example 

As another example, let us calculate 1 2⁄ + 1 2⁄  :  

 1 2⁄ + 1 2⁄ ∶ = {0 + 1/2,1/2 + 0|1 + 1/2,1/2 + 1 } 

                      ∶ = {1/2|1  1 2⁄  }   ∶ = 1 

3.1.1 Theorem 

For any numbers 𝓍, 𝓎 and 𝓏, we have: 

(a) 0 ≡ { | } as the identity element: 𝓍 + 0 ≡ 𝓍 

(b) Commutativity: 𝓍 + 𝓎 ≡ 𝓎 + 𝓍 

(c) Associativity: (𝓍 + 𝓎) + 𝓏 ≡ 𝓍 + (𝓎 + 𝓏) 

Proof. 

(a(𝓍 + 0 = { Χ𝐿 + 0, 𝓍 + ∅|Χ𝑅 + 0, 𝓍 + ∅} =

{𝓍1
𝐿 + 0, … |𝓍1

𝑅 + 0, … } 

Then by induction 𝓍 + 0 ≡ 𝓍   if  0 + 0 ≡ 0 , but this follows 

from 0 + 0 = 0 as shown above. 

(b) We have 

  𝓍 + 𝓎 ≡ {Χ𝐿 + 𝓎, 𝓍 + Y𝐿|Χ𝑅 + 𝓎, 𝓍 + Y𝑅} ≡

{𝓍1
𝐿 + 𝓎, … , 𝓍 + 𝓎

1
𝐿 , … |𝓍1

𝑅 + 𝓎, … , 𝓍 + 𝓎
1

𝑅 , … } 

and 

𝓎 + 𝓍 ≡ {Y𝐿 + 𝓍, 𝓎 + Χ𝐿|Y𝑅 + 𝓍, 𝓎 + Χ𝑅} ≡

{𝓎1
𝐿 + 𝓍, … , 𝓎 + 𝓍1

𝐿, … |𝓎1
𝑅 + 𝓍, … , 𝓎 + 𝓍1

𝑅, … }  

The commutativity of 𝓍 and 𝓎 then depends on the 

commutativity of the pairs formed of one of 𝓍 or 𝓎 and an 

option of the other. So inductively we need to check only that 

𝓍 + 0 ≡ 0 + 𝓍. But 

 0 +  𝓍 ≡ {0 +  𝓍1
𝐿 , … |0 +  𝓍1

𝑅 , … }, so inductively 𝑥 + 0 ≡ 𝑥 ≡

0 + 𝑥 , since  

  0 + 0 ≡ 0 + 0  .  

(c) We have 

{( 𝓍1
𝐿 + 𝓎) + 𝓏, … , (𝓍 +  𝓎

1
𝐿) + 𝓏, … , (𝓍 + 𝓎) +  𝓏1

𝐿 , … }  

for the left set of (𝓍 + 𝓎) + 𝓏, and 

 { 𝓍1
𝐿 + (𝓎 + 𝓏), … , 𝓍 + ( 𝓎

1
𝐿 + 𝓏), … , 𝓍 + (𝓎 +  𝓏1

𝐿), … }  

for the left set of 𝓍 + (𝓎 + 𝓏). So again, we inductively reduce 

the question down to associativity on 0, but clearly 

 (𝓍 + 𝓎) + 𝓏 ≡ 𝓍 + (𝓎 + 𝓏) when one of 𝓍, 𝓎, or 𝓏 is equal to 0 

from (a). The same argument shows that  

 ((𝓍 + 𝓎) + 𝓏)
𝑅

≡ (𝓍 + (𝓎 + 𝓏))
𝑅

 

 , finishing the proof                                                                                                                                   

3.1.2 Theorem 

If 𝓍 and 𝓎 are numbers, then 𝓍 + 𝓎 is a number. 

Proof. 

From 2.1 definition we must show that no element in (𝓍 + 𝓎)𝐿 

is greater-than-or-equal to any element in (𝓍 + 𝓎)𝑅. But if all of 

𝓍𝐿 + 𝓎, 𝓍 + 𝓎𝐿, 𝓍𝑅 + 𝓎, 𝓍 + 𝓎𝑅 are numbers, this follows from 

Theorems. For example, since 𝓍𝐿 < 𝓍 and 𝓎 < 𝓎𝑅, we know 

𝓍𝐿 + 𝓎 < 𝓍 + 𝓎 < 𝓍 + 𝓎𝑅 . So inductively we reduce the 

question on 𝓍 + 𝓎 down to questions on the sums of one of 𝓍 

or 𝓎 and an option of the other. Eventually then we only need 
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to show that for a number 𝓏 that 𝓏 +0 and 0 + 𝓏 are numbers, 

which follows from 0 being the additive identity, so the 

theorem holds for any numbers 𝓍 and 𝓎.          

3.2 Negation 

We define the negation of a number 𝓍 as: 

                          −𝓍 = {−Χ𝐿|−Χ𝑅}     

where for any set of numbers 𝐴 

                  −𝐴 = {−𝑎1, −𝑎2, −𝑎3, … } 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 ∈ 𝐴   

3.2.1 Theorem 

If any 𝓍 is a number, then so is −𝓍 

Proof. 

We have 𝓍 = {Χ𝐿|Χ𝑅} and −𝓍 = {−Χ𝑅|−Χ𝐿}. We need to show 

by definition1 that no −𝓍𝑅 is greater-than-or-equal to any −𝓍𝐿. 

But since 𝓍 is a number we have  𝓍𝐿 < 𝓍𝑅, for all  𝓍𝐿 , 𝓍𝑅, and 

if −𝓍𝐿 and −𝓍𝑅  are also numbers, then we must have that 

−𝓍𝑅 <  −𝓍𝐿, that is that 𝓍 is a number. So inductively we reduce 

the question on x to questions of the options of 𝓍 , and 

eventually we only have to consider the theorem for 0, but since 

0 ≡ 0, the theorem holds for 0 and therefore inductively for any 

number 𝓍. [17]            

3.3 Multiplication 

In defining multiplication, we can use the fact that we know, 

 for example, 𝑥 −  𝑥𝐿 > 0 𝑎𝑛𝑑 𝓎 − 𝓎𝐿 > 0 , and that we want the 

property that (𝑥 −  𝑥𝐿)(𝓎 − 𝓎𝐿) > 0 , and also the property that 

we can expand this to get 𝑥𝑦 −  𝑥𝐿𝑦 − 𝑥𝓎𝐿 +  𝑥𝐿𝓎𝐿 > 0.So we 

want 𝑥𝑦 >  𝑥𝐿𝑦 + 𝑥𝓎𝐿 −  𝑥𝐿𝓎𝐿, and similarly we can formulate 

inequalities for all the other combinations  

of 𝑥 −  𝑥𝐿 > 0 , 𝓎 − 𝓎𝐿 > 0 , 𝑥 −  𝑥𝑅 < 0, 𝓎 − 𝓎𝑅 < 0 , to give us 

a tentative definition of multiplication  

as: 𝑥𝑦 =

{𝑋𝐿𝑦 + 𝑥𝑌𝐿 − 𝑋𝐿𝑌𝐿 , X𝑅𝑦 + 𝑥Y𝑅 − X𝑅Y𝑅|𝑋𝐿𝑦 + 𝑥Y𝑅 − X𝐿Y𝑅 , X𝑅𝑦 + 𝑥𝑌𝐿 − X𝑅Y𝐿}. 

which we will now check has all the properties we expect of it. 

𝐴𝑥 = {𝑎𝑥: 𝑎 ∈ 𝐴},Similarly, to addition and negation, we use the 

notation  𝐴𝐵 = {𝑎 ∈ 𝑏: 𝑎𝐴, 𝑏 ∈ 𝐵}to express multiplication on 

sets. 

3.3.1 Theorem  

For any numbers𝑥 , 𝑦 𝑎𝑛𝑑 𝑧 : 

(a) 𝜋(𝑥, 𝑦, 𝑧): (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧 

(b) Ω(𝑥, 𝑦, 𝑧): (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) 

Proof. 

(a)We have 

𝑥𝑧 + 𝑦𝑧 ≡ {(𝑋𝑍)𝐿 + 𝑦𝑧, … | … } ≡ {𝛸𝐿𝑧 + 𝑥𝑍𝐿 − 𝛸𝐿𝑍𝐿 + 𝑦𝑧, … | … } 

and 

 (𝑥 + 𝑦)𝑧 ≡ {(𝛸𝐿 + 𝑦)𝑧 + (𝑥 + 𝑦)𝑍𝐿 − (𝛸𝐿 + 𝑦)𝑍𝐿 , … | … } 

Now suppose𝜋(𝛸𝐿, 𝑦, 𝑧), 𝜋(𝑥, 𝑦, 𝑍𝐿), 𝜋(𝛸𝐿, 𝑦, 𝑍𝐿) all hold. Then 

(𝑥 + 𝑦)𝑧 becomes, using the equality 𝑥 + −𝑥 = 0:  

(𝑥 + 𝑦)𝑧 ≡ {𝛸𝐿𝑧 + 𝑦𝑧 + 𝑥𝑍𝐿 + 𝑦𝑍𝐿 − 𝛸𝐿𝑍𝐿 − 𝑦𝑍𝐿 , … | … }

= {𝛸𝐿𝑧 + 𝑦𝑧 + 𝑥𝑍𝐿 − 𝛸𝐿𝑍𝐿, … | … } ≡ 𝑥𝑧 + 𝑦𝑧 

So 𝜋(𝑥, 𝑦, 𝑧) depends on 𝜋 holding for the left options of 𝑥 

and 𝑧, but if 𝑥𝐿 = 0 or 

 𝑧𝐿 = 0, then clearly 𝜋 holds, so inductively(𝑥 + 𝑦) = 𝑥𝑧 + 𝑦𝑧 . 

(b)We have     𝑥(𝑦𝑧) ≡ {𝛸𝐿(𝑦𝑧) + 𝑥(𝑌𝑍)𝐿 − 𝛸𝐿(𝑌𝑍)𝐿 , … | … } ≡

{𝛸𝐿(𝑦𝑧) + 𝑥(𝑌𝐿𝑧 + 𝑦𝑍𝐿 − 𝑌𝐿𝑍𝐿) − 𝛸𝐿(𝑌𝐿𝑧 + 𝑦𝑍𝐿 − 𝑌𝐿𝑍𝐿 , … | … } 

then using (a), −(−𝑥) ≡ 𝑥  and 

 𝑦𝑥 ≡ 𝑥𝑦,

= {
𝛸𝐿(𝑦𝑧) + 𝑥(𝑌𝐿𝑧) + 𝑥(𝑦𝑍𝐿) − 𝑥(𝑌𝐿𝑍𝐿) − 𝛸𝐿(𝑌𝐿𝑧) − 𝛸𝐿(𝑦𝑍𝐿)

+𝛸𝐿(𝑌𝐿𝑍𝐿), . .
| … } 

And 

 (𝑥𝑦)𝑧 ≡ {(𝑋𝑌)𝐿𝑧 + (𝑥𝑦)𝑍𝐿 − (𝑥𝑦)𝐿𝑍𝐿, … | … } ≡

{(𝛸𝐿𝑦 + 𝑥𝑌𝐿 − 𝛸𝐿𝑌𝐿)𝑧 + (𝑥𝑦)𝑍𝐿 − (𝛸𝐿𝑦 + 𝑥𝑌𝐿 − 𝛸𝐿𝑌𝐿)𝑍𝐿 , … | … } 

then using (a) and (— 𝑥) ≡ 𝑥, 

= {
(𝛸𝐿𝑦)𝑧 + (𝑥𝑌𝐿)𝑧 − (𝛸𝐿𝑌𝐿)𝑧 + (𝑥𝑦)𝑍𝐿 − (𝛸𝐿𝑦)𝑍𝐿 −

(𝑥𝑌𝐿)𝑍𝐿 + (𝛸𝐿𝑌𝐿)𝑍𝐿, …
| … } 

which, if Ω(𝛸𝐿 , 𝑦, 𝑧), Ω(𝑥, 𝑌𝐿 , 𝑧) , ... all hold, 

≡ {
𝛸𝐿(𝑦𝑧) + 𝑥(𝑦𝐿𝑧) − 𝛸𝐿(𝑌𝐿𝑧) + 𝑥(𝑦𝑍𝐿) −

𝛸𝐿(𝑦𝑍𝐿) − 𝑥(𝑌𝐿𝑍𝐿) + 𝛸𝐿(𝑌𝐿𝑍𝐿), …
| … } ≡ 𝑥(𝑦𝑧)  

So again we reduce Ω(𝑥, 𝑦, 𝑧) down to the same proposition on 

its options, but when one of 𝑥, 𝑦 or 𝑧 is equal to 0, clearly Ω 

holds, so by induction, 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧. 

Note that since we evoke the equality 𝑥 + −𝑥 = 0 in the proof, 

the theorem only holds up to equality, not identity. 

3.4 Division 

The last thing we must show to have a field is how to find the 

multiplicative inverse of 𝑎 number, that is, for any 𝑥 ≠ 0 , if 

there exists a number 𝑦, such that 𝑥𝑦 = 𝑡 , then we need to show 

how to find this 𝑦. But note that if, for a positive 𝑥, we could 

find a  ý such that 𝑥ý = 1, then we would also know that 

𝑡(𝑥 ý) = t ⇒ x(t 𝑦) = 𝑡́́ , that is that 𝑦 = 𝑡ý . If 𝑥 were instead 

negative, we would just need to multiply the equation through 

by −1. So, we only need show how to find 𝑦 for some 𝑥𝑦 = 1, 

where 𝑥 is positive. 

3.4.1 Lemma 

   For every positive 𝓍 = {Χ𝐿|Χ𝑅}, we can write 𝓍 in a form 

withΧ𝐿 = {0, x𝐿}, where all x𝐿are positive, and this new form is 

equal to the original one. 

Proof. 

Since 0 < 𝑥 is positive, by the Extension Theorem we can 

append 0 to X𝐿. Then from the Truncation Theorem we can 

remove any element of X𝐿less than 0 . 

For the rest of this section when we write x𝐿we are referring 

only to the non-zero terms, and since x here is positive, we must 

have all x𝑅 > 0. Now we define 𝑦 recursively. That is, every 

element of Y𝐿generates a new element inY𝐿, and similarly forY𝑅  . 

We write 

𝑦 = {
0,

1 + ( 𝑥𝑅 − 𝑥) 𝑦𝐿

 𝑥𝑅 ,

1 + ( 𝑥𝐿 − 𝑥) 𝑦𝑅

 𝑥𝐿

|

1 + ( 𝑥𝐿 − 𝑥) 𝑦𝐿

 𝑥𝐿 ,

1 + ( 𝑥𝑅 − 𝑥) 𝑦𝑅

 𝑥𝑅

} 

which has 𝑦𝐿 and  𝑦𝑅 in the definition of  𝑦  ! What we mean by 

this is that we build up these left and right sets by using 
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elements already in them, so that if y1
𝐿is in 𝑌𝐿, then ,for 

example, (1 + ( 𝑥𝑅 − 𝑥)𝑦1
𝐿)  𝑥𝑅 ⁄  is also in 𝑌𝐿. Conway gives the 

following elucidation [5]: 

Let 𝑥 = {0,2| }. Then the only (non-zero)  𝑥𝐿 is 2, giving 

us 1  𝑥𝐿 = 1 2⁄⁄  and( 𝑥𝐿 − 𝑥) = −1 , and there is no 𝑥𝐿,  

so, we have 

 𝑦 = {0,
1

2
(1 −  𝑦𝑅)|

1

2
(1 −  𝑦𝐿)}. 

 Putting in 𝑦𝐿 = 0 into the right option updates 𝑦  to  

𝑦 = {0,
1

2
(1 −  𝑦𝑅)|

1

2
,

1

2
(1 −  𝑦𝐿)}, and we can now put this new 

right option into the left set, 

 giving us 

 𝑦 = {0,
1

4
,

1

2
(1 −  𝑦𝑅)|

1

2
,

1

2
(1 −  𝑦𝐿)}. We can then repeat this 

process endlessly. 

        In the next section we will explain the relationship between 

Surreal numbers and games and how players choose their 

movements based on Surreal numbers 

 

4. Surreal Numbers and Game                                                                             
We can think of any number 𝑔 = {𝑎, 𝑏, 𝑐, … |𝑑, 𝑒, 𝑓, … }[18] as a 

game where the elements of the left set represent moves that 

one player can make, and the elements in the right set represent 

the moves that another player can make. For example, if 𝑔 was 

a game between players Left and Right, then Left could move 

from some starting point, 𝑔, to any of 𝑎, 𝑏, 𝑐, …, and Right could 

move from 𝑔 to any of 𝑑, 𝑒, 𝑓, …. If Left starts the game and 

moves to 𝑎, then the representation of the game is changed 

to𝑎 = {𝐴, 𝐵, 𝐶, … |𝐷, 𝐸, 𝐹, … }. Thus Right can now move to any 

of 𝐷, 𝐸, 𝐹, …. If she moves to 𝐸 = {𝛼, 𝛽, 𝛾, . . . |𝜖, 𝛿, 𝜁, . . . },  then Left 

can then move to any of  𝜖, 𝛿, 𝜁, . . .,  and so on. The last person to 

make a move wins the game. 

                                     
                 

                                           Figure 1:  

  A Hackenbush game [19] 

One specific game that we can consider is Hackenbush (Figure 

1 provides a fancy example). Hackenbush is a two-player game 

played with a picture of nodes joined by edges that are colored 

with two different colors (we will use red and blue). The picture 

must be constructed so that you can reach the ground (which is 

the dotted line in Figure 2) from any node by travelling along a 

series of adjacent edges. The two players, Left and Right, take 

turns alternately. Left can delete only blue edges and Right can 

delete only red edges. After one edge is deleted, any edges no 

longer connected to the ground are also deleted. The last player 

to delete an edge wins. 

4.1 Basic Games 

We will now analyze some simple games. 

  

       
If there are no red or blue edges then neither player has any 

moves, meaning that the game would be { ∅| ∅} = 0. We call 

this state endgame [18]. Note that the first person to move 

automatically loses. 

                
If there is just one blue edge, then Left can move to 0 while 

Right has no moves; thus the game would be { 0| } = 1. In this 

case, Left automatically wins since there are no legal moves for 

Right. If there were just one red edge, then Left would have no 

moves while Right could move to 0. Thus the game would be 

{ | 0} = −1, and Right would win.  

 

                
If there are two blue edges stacked on top of one another, then 

Left can pull the bottom edge to form game 0, or the top edge 

to form 1. Thus the game would be { 0,1| } ≡ { 1| } = 2. Again, 

Left automatically wins. If we had two red edges stacked on top 

of each other then we would have the game { |0, −1  } ≡

{ |−1 } = −2. In general, if we have a chain 𝑛 blue edges then 

the game will have a value of 𝑛, and if we have a chain of  𝑛 red 

edges then the game will have a value of −𝑛, where  𝑛  is a 

positive integer. 
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If there is one red edge and one blue edge coming from one 

node, then the game would be {−1|1 }.Since the second player 

to move will cause an endgame, we see that the first player to 

move will lose. Thus this game is equivalent to  0, meaning the 

game  0 has multiple forms. 

 

                                                    
If there is one red edge on top of one blue edge, then Left can 

delete the bottom edge to form game 0, while Right can delete 

the top edge to form game 1. Thus, the game would be { 0|1 } =

 1 2⁄ . We note that Left will win regardless of who goes first. If 

we had one blue edge stacked on top of one red edge, then Left 

could delete the top edge to form −1 while Right could delete 

the bottom to form 0. Thus, we would have {−1|0 } =  1 2⁄ , and 

Right would win regardless of who goes first. 

  In general, we use the following notations from On Numbers 

and Games [18]: 

𝐺 > 0(𝐺 is positive) if there is a winning strategy for 

Left 

𝐺 < 0 (𝐺 is negative) if there is a winning strategy for 

Right 

𝐺 ≡ 0 (𝐺 is like 0) if there is a winning strategy for the 

second person to move 

𝐺‖0 (𝐺 is fuzzy) if there is a winning strategy for the 

first person to move 

𝐺 ≥ 0 if 𝐺 > 0 or 𝐺 ≡ 0, which means that if Right 

starts there is a winning strategy for Left, since Left 

would then be the second to move. 

𝐺 ≤ 0 if 𝐺 < 0 or 𝐺 ≡ 0, which means that if Left starts 

there is a winning strategy for Right. 

𝐺 ∥> 0 if 𝐺 > 0 or 𝐺‖0, which means if Left starts then 

there is a winning strategy for Left, since they would be 

the first to move. 

𝐺 <∥ 0 if 𝐺 < 0 or 𝐺‖0, which means that if Right 

starts then there is a winning strategy for Right. 

5. Conclusion 

     we have shown surreal number and how we construct them 

and the all operations on them and that we have a 

multiplicative inverse for any non-zero number. We also 

showed before that we have an additive inverse, additive and 

multiplicative identities, that both addition and multiplication 

are associative, commutative, and closed, and finally that 

multiplication is distributive under addition. That is, we have 

defined addition and multiplication on the equivalence classes 

of the Surreal Numbers in a way that satisfies all the field 

definitions, as mentioned previously. We also showed in 

previous section that numbers are totally ordered. In sum then, 

we have shown that the surreals form a totally ordered Field. 

Finally, we mentioned the relationship between the Surreal 

numbers and the games and showed examples of the basic 

games. 
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